Plant Responses to Ethylene Gas Are Mediated by SCFEBF1/EBF2-Dependent Proteolysis of EIN3 Transcription Factor

نویسندگان

  • Hongwei Guo
  • Joseph R Ecker
چکیده

Plants use ethylene gas as a signal to regulate myriad developmental processes and stress responses. The Arabidopsis EIN3 protein is a key transcription factor mediating ethylene-regulated gene expression and morphological responses. Here, we report that EIN3 protein levels rapidly increase in response to ethylene and this response requires several ethylene-signaling pathway components including the ethylene receptors (ETR1 and EIN4), CTR1, EIN2, EIN5, and EIN6. In the absence of ethylene, EIN3 is quickly degraded through a ubiquitin/proteasome pathway mediated by two F box proteins, EBF1 and EBF2. Plants containing mutations in either gene show enhanced ethylene response by stabilizing EIN3, whereas efb1 efb2 double mutants show constitutive ethylene phenotypes. Plants overexpressing either F box gene display ethylene insensitivity and destabilization of EIN3 protein. These results reveal that a ubiquitin/proteasome pathway negatively regulates ethylene responses by targeting EIN3 for degradation, and pinpoint EIN3 regulation as the key step in the response to ethylene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis.

Plant responses to ethylene are mediated by regulation of EBF1/2-dependent degradation of the ETHYLENE INSENSITIVE3 (EIN3) transcription factor. Here, we report that the level of EIL1 protein is upregulated by ethylene through an EBF1/2-dependent pathway. Genetic analysis revealed that EIL1 and EIN3 cooperatively but differentially regulate a wide array of ethylene responses, with EIL1 mainly i...

متن کامل

The Arabidopsis EIN3 binding F-Box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling.

Ethylene signaling in Arabidopsis thaliana converges on the ETHYLENE-INSENSITIVE3 (EIN3)/EIN3-Like (EIL) transcription factors to induce various responses. EIN3 BINDING F-BOX1 (EBF1) and EBF2 were recently shown to function in ethylene perception by regulating EIN3/EIL turnover. In the absence of ethylene, EIN3 and possibly other EIL proteins are targeted for ubiquitination and subsequent degra...

متن کامل

ETHYLENE-INSENSITIVE5 encodes a 5'-->3' exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2.

Ethylene is a gaseous plant growth regulator that controls a multitude of developmental and stress responses. Recently, the levels of Arabidopsis EIN3 protein, a key transcription factor mediating ethylene-regulated gene expression, have been demonstrated to increase in response to the presence of ethylene gas. Furthermore, in the absence of ethylene, EIN3 is quickly degraded through a ubiquiti...

متن کامل

EIN3-Dependent Regulation of Plant Ethylene Hormone Signaling by Two Arabidopsis F Box Proteins EBF1 and EBF2

The plant hormone ethylene regulates a wide range of developmental processes and the response of plants to stress and pathogens. Genetic studies in Arabidopsis led to a partial elucidation of the mechanisms of ethylene action. Ethylene signal transduction initiates with ethylene binding at a family of ethylene receptors and terminates in a transcription cascade involving the EIN3/EIL and ERF fa...

متن کامل

Salt-Induced Stabilization of EIN3/EIL1 Confers Salinity Tolerance by Deterring ROS Accumulation in Arabidopsis

Ethylene has been regarded as a stress hormone to regulate myriad stress responses. Salinity stress is one of the most serious abiotic stresses limiting plant growth and development. But how ethylene signaling is involved in plant response to salt stress is poorly understood. Here we showed that Arabidopsis plants pretreated with ethylene exhibited enhanced tolerance to salt stress. Gain- and l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2003